微破壊式手法による下水管渠の劣化診断法の開発

山本 大介¹, 濵田 秀則², 佐川 康貴³, 池田 隆徳⁴ ^{1~4}九州大学大学院 工学研究院 建設デザイン部門

概要:硫酸劣化したコンクリートは、表層の劣化した領域と、深い箇所の健全領域とに明確に区分 できる。この健全厚さを超音波法により求める方法、および内視鏡カメラにより求める方法につい て検討した。さらに、曲げひび割れ荷重の支配要因は管頂部の健全厚さであり、この厚さより曲げ ひび割れ荷重を推定できることを示し、これにより劣化診断手法を確立できることを示した。

1. はじめに

高度経済成長期を境に、都市部を中心に多くの下水道 管路が整備されてきた。平成21年度には、わが国の下水 道管路総延長は40万kmを超えているとされており、下 水道普及率(下水道利用人口/総人口)も71.1%と言われ ている¹⁾。一般に下水道管路の耐用年数は50年とされて いるが、図1に示すように、2020年代を境に既設の下水 道管路の多くがその耐用年数50年を迎えようとしている ²⁾。そのため、近い将来には膨大な下水道管路ストックが 一斉に寿命を迎えることが予測されている。近年の自治 体の厳しい財政状況を鑑み、この下水道管路の大量の更 新時期の到来により、下水道事業に関する財政は破綻す るとの警鐘が鳴らされている。

また、下水道管路で使用されるコンクリート製下水管 渠には、その特有の環境による硫酸劣化が多く見られる。 下水中の微生物の活動により硫酸が生成され、コンクリ ートが硫酸劣化を起こす³⁾。このため下水道管渠が損傷し、 下水の漏出や道路陥没等を起こし、社会問題となってい る。この硫酸劣化により、耐用年数50年を満たない下水 道管渠が早期に重大な劣化を起こす事例が多数報告され ている。そのため早期に補修・補強を必要とするケース が多数見受けられ、維持管理コストが高騰し、上述の下 水道事業の財政圧迫を加速させる一因となっている。

下水道事業の財政破綻を回避するためにも,下水道管 路のライフサイクルコストを抑えることが必須となる。 そのためには補修・更新時期を適切に見極め,予防保全 的な維持管理を行うことがますます重要になってくる。 しかしながら,現状の診断技術では下水道管渠の内側か らのビデオカメラ観測などが主流であり,下水道管渠の 構造物としての曲げひび割れ荷重の評価を基にした下水 管渠の健全度判定を適切に行うことは困難である。その ため,下水道管渠の適切な劣化診断を行う技術開発が急

務であると考えられる。

研究の背景

著者らは、既往の研究において、38 年間供用された下 水道管渠の調査⁴を行っている。既往の研究における試験 項目と試験体記号を表1に示す。また、この中で下水道 管渠を、常に下水に接する下部、下水位の上下で乾湿の 影響を受ける境界部、通常下水と接しない上部と、3 つの 部位に分類している。

この調査では、試験体 A-4~A-8、補修管1および補修 管2について曲げ試験を行った。ここで、補修管とは FRP 内面補修を施している下水道管渠である。曲げ試験結果 を図2に示す。これらの試験の実施により、以下のこと が明らかとなった。

下水道管渠の境界部および上部の管内側表面では細孔 量が増大し、Ca量が減少していた。また、下水道管渠の 軸方向垂直断面にフェノールフタレイン溶液を噴霧した ところ、劣化した領域は中性化が確認された。さらに、 ビッカース硬さ試験を行ったところ、劣化した領域のビ

	試験体記号										
試験項目	A−1	A-2	A-3	A-4	A-5	A-6	A-7 A	A-8	補修 管1	補修 管2	
曲げ試験	-	-	-	0	0	0	0	0	0	0	
ビッカース硬さ	0	0	0	0	0	0	0	0	0	0	
中性化深さ	0	0	0	0	0	0	0	0	0	0	
配合推定	0	0	0	_	-	-	-	-	-	-	
シュミットハンマー	-	0	0	-	-	-	-	-	-	-	
細孔径分布	_	0	-	_	-	-	-	-	-	-	
X線分析顕微鏡	0	-	-	0	-	-	-	-	-	-	

表1 既往の研究における劣化下水道管渠調査の試験項目4)

ッカース硬さは著しく低下していた。これらの現象は、 下水道管渠の劣化部の内側表面付近で見られるが、それ より深い領域のコンクリートは健全であった。

また,ビッカース硬さの変化は急激であり,ある深さ で劣化部と健全部を明確に区分できた。ここで,管内側 表面からビッカース硬さの急変する位置までの深さを, ビッカース劣化深さと定義した。なお,供用時は常時下 水に接していたと推測される管下部では,これらの劣化 現象は全く見られなかった。

本論文では、これら試験結果の関係性を整理し、コン クリート製下水道管渠の曲げひび割れ荷重の低下要因に ついて検討する。その上で、曲げひび割れ荷重に基づく コンクリート製下水管渠の劣化診断方法について考察す ることを目的とする。

3. 下水道管渠の劣化深さに関する考察

3.1 超音波伝播速度測定

既往の研究⁴では、水銀王入法による細孔径分布測定で、 劣化部のコンクリートはポーラス化していることを示し た。これより、超音波伝播速度も低下していることが予 測される。ここで超音波に着目した理由は、非開削・非 破壊で診断することを前提としており、コストを抑える 為すでに普及している非破壊試験の中では、超音波法が 最も適する。

本実験では埋設中の下水道管渠にも適用可能な表面法 を用いて下水道管渠の内側から超音波の計測を行った。 表面法とは試験体の同一面に2つの振動子を当て、伝播速 度を計測する方法である。また、コンクリートの超音波 測定に適する周波数は50~100kHzである。本実験では 50kHzの縦波および横波超音波を採用した。計測の際、オ シロスコープで波を観察すると、波形は図3のようになり、 途中から波形が明確に変化していた。

既往の研究⁹より,鉄筋コンクリートの超音波伝播経路 は鉄筋の影響を受けることが確認されている。鉄筋中を 伝わる超音波はコンクリート中を伝わる超音波より速い ため,鉄筋中を伝わる超音波が先に振動子に到達するた

図3 オシロスコープを用いた第2波超音波伝播時間

めである。そこで,鉄筋の影響を除くため,コンクリー ト中を伝わる波(第2波)の到達時間(=T)を読取った(図 3参照)。

このようにして得られた第2波の超音波伝播速度を,縦 波横波それぞれ図4,図5に示す。図より縦波・横波とも に、コンクリートの劣化が見られる上部および境界部で 超音波伝播速度の低下が見られた。

この場合の超音波伝播経路については、著者らによる 既往の研究でモデル供試体を用いた実験により明らかに されている⁹。ここで、脆弱コンクリートの下層に健全コ ンクリートがある場合を想定する(図6参照)。脆弱コン

図6 脆弱・健全層からなる媒質中を伝わる波の経路

軸,伝播時間をy軸で表した時の,屈曲点が現れる振動子 間隔(x₀)以上の振動子間隔を取った場合,超音波伝播経路 は経路ABCDになり,脆弱層が厚くなるほど超音波伝播 速度も低下することをモデル供試体実験により確認して いる。そのため,下水道管渠に対し内側より超音波表面 法を適用した場合の第1波,第2波は図7のような伝播経路 を取ると推測される。

また,供用中の下水道管渠は湿潤状態である場合が多いと推測される。横波は縦波に比べ乾湿の影響による測 定誤差を受けにくい。そのため、含水の影響を受けやすい下水道管渠の計測では横波が適すると考える。しかし ながら,横波専用のカップリング剤はせん断応力が伝達 するように製造されるため粘性が高く,取扱いが縦波カ ップリング剤に比べ難しいことに注意が必要である。

3.2 各試験結果の関係性に関する考察

既往の研究による結果⁴では、下水道管渠の好気性領域 である上部および境界部で劣化が進行し、嫌気性域であ る下部では劣化は進行しないことが確認されている。ま た、劣化部では脆弱層を残しながら劣化が進行している ことが観察された。これは希硫酸環境下で硫酸劣化が生 じたもの⁷であると推測される。

また、コンクリートの強度は細孔径量と関係があると され、特に骨材とセメントペーストとの境界である遷移 帯に多く存在する細孔径 50nm~2µm の空隙の累積細孔 量が大きく関与すると言われる⁸。既往の調査⁴⁾で各部位 の 50nm~2µm 細孔量と、同領域でのビッカース硬さを 調べた結果、図 8 のような関係が得られた。図より、劣 化部内側のビッカース硬さが小さい領域のコンクリート 組織は、ポーラス化していることがわかる。

また,既往の調 a^{4} による X 線分析顕微鏡画像での管 内側から, Ca 分布量の少ない, Ca が溶脱したと思われる 厚さを『Ca 溶脱深さ』と定義した。試験体 A-1, A-4 の 下水道管渠内面から計測した中性化深さと Ca 溶脱深さ の関係から(図9参照),これら2つには正の相関が認め られた。よって, X 線分析顕微鏡で観察された劣化部の

図9 中性化深さと Ca 溶脱深さの関係

Ca 溶脱は、コンクリート中の C-S-H 構造が、硫酸により 炭酸カルシウムに分解され石膏化し、Ca イオンが溶脱し た結果、アルカリ性を失い中性化したものと推測される。 次に、図 10 に試験体 A-1、A-4 から計測したビッカース 劣化深さと Ca 溶脱深さ、図 11 に試験体 A-1~A-8 から計 測したビッカース劣化深さと中性化深さの関係を示す。 図より 3 つの間には相関関係が認められる。また、特に 図 11 からビッカース劣化深さと中性化深さは良い相関関 係にあると言える。

3.3 超音波法による下水道管渠の中性化深さの推定法

ここでは、硫酸劣化を受けたコンクリートの劣化深さ を、非破壊試験方法の1つである超音波法を用いて推定 することを検討する。表面法横波超音波伝播速度とビッ カース劣化深さの関係を図12に、同じく中性化深さとの 関係を図13に示す。これらの図より、ビッカース劣化深 さと中性化深さは表面法超音波と相関関係があることが

図11 ビッカース劣化深さと中性化深さの関係

ビッカース劣化深さ(mm)

わかる。

ここで、著者らによる既往の研究[®]より、超音波伝播速 度から中性化深さを推定する方法を以下に示す。実環境 下における下水道管渠は区間により強度が異なる可能性 があるため、この要因を取り除く必要がある。下水道管 渠下部は通常水中にあり、嫌気性条件下で劣化を受けに くい³。なお、下部は流水によるすりへり作用を受けるが、 材料自体の化学的な変質はない。よって、強度の相違の 影響を除くため、劣化部の超音波伝播速度 V を下水道管 渠下部の超音波伝播速度 V_0 で除す「超音波伝播速度比 V/V_0 」を導入した。図 14 に、試験体 A-1~A-8 の下水道 管渠の試験結果による中性化深さ Y と V/V_0 の関係を示す。 また、中性化深さは式(1)で表す回帰曲線から、Y で表わ すことができる。

 $Y = -11.39 \cdot Ln(V/V_0) + 52.1 \tag{1}$

よって,超音波伝播速度から,式(1)により中性化深さ を推定できることが示された。本手法による中性化深さ

図 12 超音波伝播速度とビッカース劣化深さの関係 (表面法横波)

目盛: 1mm 刻み

図15 内視鏡カメラを用いた中性化深さ計測状況

の推定誤差は±3mm以内であり、実用的に使用できる誤 差範囲であった。

一般に、下水道管渠におけるコンクリートの硫酸劣化 は、二水石膏、エトリンガイト等を生成し、それらが多 水和物であるため膨張し、コンクリート組織が膨張破壊 するとされている。

本実験による下水道管渠の中性化した領域では、ビッ カース硬さの低下が確認され、また同領域でCaも溶脱し、 そのCaの溶脱したところにSの存在が確認されており、 また同領域で細孔量が増大していることが明らかとなっ た。これらの試験結果から考察すると、中性化の原因は 大気中の二酸化炭素が作用する炭酸化によるものではな く、硫酸による劣化でセメント組織が石膏化し、セメン ト組織のpHが低下したことによるものと推測される。

3.4 内視鏡カメラを用いた中性化深さの計測方法

前節では非破壊による超音波法を用いた非破壊による 中性化深さの推定について考察を行った。ここでは、非 開削で、より直接的に中性化深さを計測するもう一つの 方法として、小径のドリル掘削孔にフェノールフタレイ ン溶液を直接噴霧し、ドリル掘削孔の側壁を工業用内視 鏡カメラを用いて直接観察する方法について検討した。 使用した内視鏡カメラはMORITEX製BS-2.4であり、レン ズの先端は φ 2.4mmであり、通常はエンジン内部の観察 などに使用されている。これにデジタルカメラを装着し、 ドリル掘削孔の側面を撮影した。

内視鏡カメラによる中性化深さ測定手順を示す。まず, 鉄筋探査機により,鉄筋の位置を推定する。推定した鉄 筋位置と重ならない部位から,ドリル穿孔する位置を決 める。次に,下水道管渠の内側よりダイヤモンドドリル を用いて, φ5mmの孔を穿孔する。穿孔する深さは下水 道管渠を貫通しない程度とする。穿孔後は,コンクリー トの粉末が残るため,コンプレッサーにより圧縮空気を 吹きかけ粉末を十分に除去する。その後,フェノールフ タレイン溶液をドリル掘削孔中に噴霧する。このとき, 噴霧量が多すぎると,未中性化部で呈色した赤紫色液が 中性化領域に垂れ,中性化深さを判定することが困難と なるため,フェノールフタレイン溶液噴霧量は必要最小 限とするよう注意が必要である。フェノールフタレイン 溶液が乾燥した後,予めスケールを装着した内視鏡カメ ラを掘削孔に挿入する。その後,下水道管渠内側表面か らの中性化深さを計測する。計測の終了後に,液だれを 防ぐため粘性を高くした断面補修材を塗り込む。

この方法により得られた、下水道管渠の掘削孔断面写 真を図15に、また、コンクリートカッターで下水道管渠 を切断し、切断面にフェノールフタレインを吹きかけた 時の中性化深さと、内視鏡カメラを用いて測定した中性 化深さとの相関図を図16に示す。この図より、内視鏡カ メラを用いた中性化深さ測定値と、コンクリートを切断 し、その断面よりノギスを用いて計測した中性化深さ測 定値は一対一の関係にあることがわかる。

以上の結果から、内視鏡カメラを用いることにより、 中性化深さを高精度で測定できることが示された。よっ て、非破壊で中性化深さを推定するには、超音波法を用 いて推定する方法を、また正確に中性化深さを求めるに は、5mmのドリル穿孔を伴うが、内視鏡カメラを用いて 求める方法を適用することが可能である。

管頂部劣化深さを用いた曲げひび割れ荷重の 推定方法に関する検討

これまでの結果より、下水道管渠は硫酸劣化により石 膏化に伴う中性化を起こしており、その中性化領域のコ ンクリート組織はポーラス化し脆弱化していた。下水道 管渠内側表面の劣化領域は、ビッカース硬さの急激な低 下を伴っており、健全な領域と劣化領域に明確に分けら れた。下水道管渠の曲げひび割れ荷重を考えるとき、そ の主たる支配要因はコンクリートの健全な厚さと考える ことができる。石膏化により脆弱となった部位は十分に 外力を受け持つことができず、結果としてコンクリート 厚さが減少したことと同じとみなすことができる。これ

ΜĽ

Q図

 $\mathcal{P}_{P/2}^{\mathsf{I}}$

に着目し、劣化深さと下水道管渠の曲げひび割れ荷重に ついて考察する。

曲げ載荷時に最も大きなモーメントが加わる箇所は, 管頂部と管底部である。そのうち管頂部は劣化により健 全な厚さが減少することがこれまでの結果で明らかにな っており,構造的に弱点部になる。実際の曲げ載荷時も 管頂部からひび割れが発生し,続いて管底部にひび割れ が発生するという破壊形態を示した。そのため,管頂部 の曲げモーメントに着目し,図17中の管頂部にかかる力 を局所的に考え,劣化深さと曲げひび割れ荷重の関係に ついて考察する。

円環(半径 r,曲げ剛性 EI)を集中荷重 P により載荷 するとき、管頂部にかかる曲げモーメント M は次のよう に表せる。

$$M_{\text{管頂}} = \frac{P \cdot r}{\pi} = 0.318P \cdot r \qquad (2)$$

よって、下水道管渠を単位幅の円環と考えた場合、管 頂には0.318P・rの曲げモーメントが加わる⁹。次に、図 18 に示すような管頂部の微小領域に着目した時、コンク リートの引張応力 f,断面二次モーメント I,また重心の 距離 y は、

図16 切断面による中性化深さノギス計測結果と 内視鏡カメラによる中性化深さ計測結果の相関図

図17 円環の曲げ載荷模式図

P

ШI

P/2

図18 下水道管渠の管頂部微小領域における長方形断面

	曲げひび割れ発生 曲げ荷重(kN/m)	管厚 (mm)	中性化深さ (mm)	(健全部厚さ) ² (mm ²)
A-4	32.67	29.87	9.31	422.71
A-5	30.00	29.22	8.18	442.68
A-6	64.37	31.99	9.57	502.66
A-7	14.10	25.91	9.28	276.56
A-8	22.87	27.29	9.43	318.98
補修1	40.83	32.13	10.66	460.96
補修2	41.10	28.56	9.64	396.81

$$f_{t} = \frac{M}{I} y \quad (3)$$
$$I = \frac{b \cdot h^{3}}{12} \quad (4)$$
$$y = \frac{l}{2} h \quad (5)$$

と表せる。式(2)に代入すると、曲げひび割れが生じる荷 重Pは、式(6)のように表せる。

$$P = \frac{F_t \times b}{6 \times 0.318 \times r} \times h^2 \tag{6}$$

ここに、 F_t : コンクリートの引張強度 (N/mm²)

r:管の半径 (mm) h:管厚 (mm)

b:載荷幅 (mm)

式(6)より、下水道管渠の呼び径が等しく(すなわち半径が同じで)、載荷幅が等しい時、ひび割れ荷重Pは、コンクリートの引張強度 F_i と管の管厚hの二乗で決定されることになる。

経年劣化した下水道管渠は、気相部のコンクリートが 硫酸により石膏化し、劣化部は著しく脆弱化する。しか し、劣化部においても劣化深さより深い部位ではビッカ ース硬さも低下せず、中性化や Ca の溶脱も確認されず、

※健全部厚さ=管厚-中性化深さ

健全であった。よって、下水道管渠に見られる硫酸劣化 では、ある深さまでのコンクリートは脆弱化し、それよ り深いコンクリートは十分に健全である。

ここで、試験体A-1~A-8、補修管1及び補修管2について、劣化深さを中性化深さとし、『管頂部の健全部厚さ =管厚-劣化深さ』として、健全管厚さの二乗と曲げひび割れ荷重の関係を試算した。その計算で用いた下水道 管渠の諸物性値を表2に示し、計算結果を図19に示す。 図より、A-4~A8 は健全管厚の二乗と曲げひび割れ荷重 の関係に相関が見られる。またFRP内面補修を施した下 水道管渠は補強効果が認められ、補修によって1.14~1.95 倍に曲げ強度が増加している。また、中性化深さから予 測したひび割れ荷重と、曲げ試験によるひび割れ荷重と の関係を図20に示す。図より、補修管の場合は予測値よ りもひび割れ荷重が大きい結果となっているが、無補修 管の場合はひび割れ荷重の予測値と実測値がほぼ一対一 の関係にあることが確認された。

以上のことから,無補修管では式(6)で示すように,管 頂部の健全部厚さを知ることができれば,下水道管渠の 曲げひび割れ荷重を予測することが可能である。本論文 では,中性化深さは超音波法もしくは内視鏡カメラを用 いて計測する手法を示した。これらの手法により中性化 深さを求め、管頂部の健全厚さの二乗を算出することで、 既設下水道管渠の曲げひび割れ荷重を非開削で推定でき る可能性があることが示唆された。

5. まとめ

- (1) 下水道管渠の硫酸劣化による、コンクリート表面の ビッカース硬さが急激な低下を起している劣化深 さをビッカース劣化深さとするとき、このビッカー ス劣化深さと中性化深さは良い相関関係にあった。
- (2) 非開削による、コンクリート製下水道管渠の中性化 深さの測定について、超音波法を用いた場合の推定 法を示すとともに、内視鏡カメラを用いた測定法も 示した。
- (3) 曲げひび割れ荷重は、管頂部の健全厚さの二乗に比例することを導き、実環境で劣化した下水道管渠の曲げ試験により、これを検証した。その結果、中性化深さより曲げひび割れ荷重を推定できる可能性が示唆された。よって、本論文で示した超音波法および内視鏡カメラを用いた中性化深さ測定手法により、非開削で既設下水道管渠の曲げひび割れ荷重を推定できる可能性があることが示唆された。

【謝辞】本研究の遂行にあたり、内視鏡カメラを用いた コンクリートの中性化深さ計測において、佐賀大学 伊藤幸広准教授にご協力を頂いた。ここに謝意を記す。 本報告内容は、(社)日本下水道協会の発刊する下水道協会に投稿予定である。

【参考文献】

- 1) 下水道協会ホームページ
- 下水道管路施設 維持管理マニュアル 2007,日本下水道管路管理業 協会,pp.177-183,2007
- C.D.Parker: The Corrosion of Concrete -2. The Function of Thiobacillus Concretivorus (Nov. Spec) in the Corrosion of Concrete Exposed to Atmospheres Containing sulfide-, Austral. J. Exp. Biol., No.23, pp.91-98, 1945
- 4) 山本大介ら:長年月供用されたコンクリート製下水道管渠の詳細な 劣化調査,下水道協会論文集投稿中,2010
- 5) 尼崎省二:コンクリートの弾性波速度に及ぼす鋼材の影響,コンク リート工学年次論文集, Vol.24, No.1, pp.1491-1496, 2002
- 山本大介ら:超音波法による硫酸劣化深さの推定手法に関する検討, コンクリート工学年次論文集, Vol.24, No.1, pp.1491-1496, 2009
- 7) 蔵重勲:硫酸によるコンクリート劣化のメカニズムと予測手法,東 京大学学位論文,2002
- 羽原俊祐:硬化コンクリートの組織及び空隙構造と物性の関係に関する研究,慶応大学大学院学位論文,p150,1992
- 9) 構造力学公式集, 土木学会, pp.407-411, 1974